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Abstract

Acoustic emission (AE) data were acquired during fatigue testing of an alumi-

num 2024-T4 compact tension specimen using a commercially available AE sys-

tem. AE signals from crack extension were identified and separated from noise

spikes, signals that reflected from the specimen edges, and signals that saturated

the instrumentation. A commercially available software package was used to train

a statistical pattern recognition system to classify the signals. The software

trained a network to recognize signals with a 91-percent accuracy when com-

pared with the researcher's interpretation of the data. Reasons for the discrepan-

cies are examined and it is postulated that additional preprocessing of the AE

data to focus on the extensional wave mode and eliminate 'other effects before

training the pattern recognition system will result in increased accuracy.

Introduction

Acoustic emission (AE) is defined as "the class of

phenomena whereby transient elastic waves are gener-

ated by the rapid release of energy from localized

sources within a material (or structure) or the transient

waves so generated" (ref. 1). Acoustic emission can be

generated by a variety of sources, including crack

nucleation and propagation, multiple dislocation slip,

twinning, grain boundary sliding, Barkhausen effect

(realignment or growth of magnetic domains), phase

transformations, and debonding and fracture of inclu-

sion. Acoustic emission can also be generated by
sources other than materials under stress, such as com-

ponents rubbing against one another (fretting), leaks,
structural vibrations, electrical transients. Spanner

(ref. 2) and Williams (ref. 3) have provided discus-
sions of sources of acoustic emission in a variety of

materials and applications. Effective use of acoustic

emission for monitoring damage progression in struc-

tures requires interpretation of the AE signals to deter-

mine the sources of the AE, their locations, and their

severity. An experienced AE practitioner can learn to

recognize signals from different sources, but always

uncertainty about some of the data exists. Current AE

systems, such as the one used in this study, can record

up to 200 waveforms per second. Pattern recognition

algorithms exist for training computers to recognize

and interpret the signals. The objective of this project
was to investigate the applicability of statistical pat-

tern recognition to the identification of crack signals in
a well-controlled test with limited sources of acoustic

emission as a prelude to a possible application to mon-
itoring crack growth in aging aircraft. The initial

approach was to use a commercially available soft-

ware package to extract features from the acoustic

emission signals and perform the pattern recognition.

Pattern recognition methods require that a network

first be trained to recognize signals; this is also called
learning. A set of signals representing the different

classes of data to be learned are provided as inputs to

the network along with their classes. The network ana-

lyzes the differences between the signals and deter-
mines which characteristics best define each class of

data. It compares its calculations with the known

classes of the signals provided by the user. Where

there is ambiguity, or disagreement with the classes

provided, there is training error. The network can con-

tinue to refine its analysis to minimize the training

error. Once the training error is minimized, the learn-

ing is complete and one or more classifiers are devel-

oped. These classifiers may be developed with the

same technique used in the learning phase, or different

techniques may be used.

The second phase of pattern recognition is classi-

fication. New signals are input to the network and ana-

lyzed by using the classifiers developed in the learning

stage. The network does not know the classes of these

signals but determines their classes based upon the

classifiers. If several classifiers are used, they may not

all agree on the classes of all the signals. If the user

knows the classes of the signals, he may evaluate the

results of the classification based upon his knowledge

of the signals. Any discrepancies between the classifi-

ers and the user's knowledge are classification errors.

In this work, a k-nearest neighbor algorithm was

used in the learning phase, and the training error was



calculatedandminimized.Classifiers were developed

for the data by using k-nearest neighbor, Gaussian

probability density, and Fisher linear discriminant

methods. A detailed description of statistical pattern

recognition and these classifiers is found in

appendix A.

TestPro software by Infometrics, Inc., was used to

perform the pattern recognition analysis. The software

is part of a computer-based instrument for ultrasonic

and eddy-current inspection and was developed spe-

cifically for those applications. The feature extraction

module is particularly tailored to the analysis of these

signals and not to acoustic emission signals. The sta-
tistical pattern recognition methods used, however, are

generic and applicable to many problems in signal
classification. Hinton (ref. 4) previously used this soft-

ware to classify and recognize acousto-ultrasonic sig-

nals from defects in composite panels. It this
composite panel study, five sets of panels, each with

different model defects of varying severity, were
examined and the data classified with TestPro soft-

ware, with zero training error for four sets and 2 per-

cent training error for the fifth set. The software was

used in this study to determine its applicability to the

classification of acoustic emission signals. The soft-

ware is described in appendix B.

Experimental Procedure

A 2024-T4 aluminum compact tension specimen
was tested in tension-tension fatigue. The specimen

was a variation of that specified in reference 5. The

specimen was approximately 21.24 cm (6 in.) square

and 0.32 cm (1/8 in.) thick, with a straight-through
notch of 6.35 cm (2.5 in.). The notch introduces a

stress concentration that initiates crack growth under

cyclic loading. The initial maximum and minimum

loads were 3314 and 823 N (745 and 185 lb), respec-

tively (load ratio R = 0.248). Four Digital Wave

B1025 AE sensors were mounted on the specimen, as

shown in figure 1, with silicone grease couplant and

held on with C-clamps. These sensors have an ampli-

tude response of +15 dB and a phase response of
:1:3° in the range from 0.1 to 1 MHz, as shown in

figure 2. The sensor output was amplified 40 dB by

Digital Wave PA2040 G/A preamplifiers, then digi-

tized and stored with a Digital Wave F4000 FWD AE

analysis system. The AE system includes high and low

pass filters and amplifiers on each channel, one of

Figure 1. 2024-T4 aluminum fatigue specimen with four
acoustic emission sensors.
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Figure 2. Absolute calibration of sensor, sensitivity, and
phase, using laser interferometer to measure surface dis-
placement, traceable to National Institute of Standards and
Technology.

each for triggering and one of each for the data. The

data channels were set to 0.02 MHz high pass and

1.5 MHz low pass filters and 30 dB gain. The trigger
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circuitry was set to 0.3 MHz high pass and 1.0 MHz

low pass filter, 36 dB gain, and O.1-V threshold. The

system triggers when the signal on any channel
exceeds the threshold and then records data on all four

channels. The system recorded 2048 points per wave-

form at 30 MHz sampling rate (0.033 Ixsec/point) with

25 percent pretrigger (512 points, 17.067 I.tsec pretrig-

ger; 1536 points, 51.2 _tsec posttrigger). The specimen

was cycled at 1 Hz until a crack was visible to the

naked eye. At that point the AE data acquisition

began. A load gate was used during part of the test to

allow the system to acquire AE data only during the

highest 20 percent of the load, which is when crack

extension is expected to occur. This reduces the

amount of data from other sources such as crack face

rubbing, which cannot occur when the crack opening

load is exceeded. Figure 3 is a schematic of the test

setup that shows the fatigue specimen with four sen-

sors and preamplifiers and acoustic emission data

acquisition system.

Preamplifiers

Specimen with
four sensors

Acoustic emission system

Figure 3. Schematic of test setup.

Analysis and Discussion

Two classes of signals were initially identified for

training: cracks and noise. A typical crack signal is

shown in figure 4 as received at all four sensors

mounted on surface of fatigue specimen used during
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Figure 4. Typical crack signal as received at each of four sensors mounted on surface of fatigue specimen.



the test. The f'n'st 17 _tsec of each signal is prior to the

system being triggered. In this example, the signal first
exceeds the 0.1-V threshold on channel 2. Channels 1

and 2 both show a rise time to peak amplitude within
the next 2 to 3 _tsec, and a decaying amplitude thereaf-

ter. The first one or two cycles of these signals are of

lower frequency, followed by some higher frequency
arrivals, an artifact of the extensional SO mode disper-

sion curves that have the very high frequencies travel-

ing at a lower velocity than the earlier nondispersive

low frequency modes. This signal appears to be a pure
extensional mode wave with no flexural modes

present, as expected for a through-thickness fatigue
crack source, as discussed by Gorman (ref. 6). Signals

resembling those shown in figure 4 were classified as

crack signals; all others were grouped into the class of

noise signals. Forty signals representative of cracks

and 64 signals representative of noise signals were

used to train a 6-nearest neighbor system. These sig-
nals were acquired with maximum and minimum

loads of 2478 and 1757 N (557 and 395 lb). The soft-

ware reported a training error of 0 percent. Fisher,
Gaussian, and 3-nearest neighbor classifiers were

developed, with reported classification errors of 6.7,

1.9, and 0 percent in classifying the training data. An

additional 752 signals, acquired with load cycling
from 3314 to 823 N (745 to 185 lb) and without the

load gate, were then analyzed by each of the classifi-

ers. Of these 752 signals, 276 showed characteristics

of crack signals. The Fisher classifier reported 420

crack signals, the Gaussian classifier reported 604

crack signals, and the 3-nearest neighbor classifier

reported 620 crack signals representing classification

errors of at least 19 to 45 percent. Based on statistical

pattern recognition concepts (ref. 7), these large dis-

crepancies clearly indicate that the training set was not

a good representation of the remaining data. Because
these data were acquired without the use of a load

gate, additional signals were likely acquired from

other sources, for example, crack face rubbing and pin

noise, that were not included in the training data. The
class of noise signals was, therefore, redef'med to
accommodate some of these other sources.

After examining the 752 signals used for analysis,
four classes of signals were identified: cracks, reflec-

tions, saturation, and spikes. Examples of these signals

are shown in figure 5. The signals classified as reflec-

tions have significant oscillations during the pre-
trigger period. This type of signal is indicative of one

that was reflected from the specimen edges and trig-

gered the AE system to acquire new data as though

from a separate signal. The saturation class comprises

signals that saturated the electronics and were clipped.

The spikes were very sharp, very short duration sig-
nals, typically of 1 to 2 lxsec, which were believed to

come from electrical noise. Training sets of 40 crack,

44 reflection, 40 saturation, and 20 spike signals were

used to train the pattern recognition system. The mini-

mum training error achieved for the 4-nearest neigh-
bor algorithm was 9.5 percent. The Gaussian, Fisher,

3-, 4-, and 5-nearest neighbor classifiers were devel-

oped to analyze the additional data. The analysis
resulted in classification errors of 5, 18, 10, 15, and

10 percent, which shows a significant increase in clas-

sification error over the case of two classes, cracks and

noise. However, only one of the 40 training signals
from cracks was improperly classified.

To evaluate the accuracy of the discriminant func-

tions derived by the software, 564 signals, represent-
ing 141 events on each of 4 channels, were then

analyzed by using each of the classifiers, and the

results were compared with a personal evaluation of

the unknown signals. The single Gaussian classifier
resulted in the lowest classification error, with 8 of 59

(14 percent) crack signals wrongly identified as
belonging to one of the other classes, and 8 of 91

(9 percent) signals which belong to other classes

wrongly identified as cracks. The remaining signals

did not appear to belong to any of the defined classes

based on the characteristics described previously;

therefore, they were not included in the analysis.

Although the training errors using four classes are
much higher than those using two classes, the actual
classification of the additional waveforms showed

improvement from errors in the 19- to 45-percent
range with two classes, to about 10 percent in this case

(16 of 150 signals). This error was, however, judged

still to be unacceptably high, based on prior experi-
ence with this software (ref. 4). Therefore, an effort
was made to further refine the definitions of the train-

ing sets. Because only one crack signal in the training
set was wrongly classified, the noise signals were

examined in an attempt to improve their representation
in the training set.

Upon reexamination of the data, a fifth class of

signals was identified. These signals are lower in

frequency than the crack signals, suggesting an
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Figure 5. Representative signals from each of four classes: cracks, reflections, saturation, and spikes.

out-of-plane source motion or flexural wave, as

discussed by Gorman and Prosser (ref. 8). They appear

to occur at lower loads and may be indicative of crack

face rubbing or pin loading noises. This fifth class was

added to the training set, aid the system trained again

using the 4-nearest neighbor algorithm. The training

error rose from 9 to 15 percent. The classification

errors in identifying crack signals rose from 1 of 40

to 5 of 40; the remaining errors were in the other four

classes.

Peak amplitude and peak-to-peak amplitude of

acoustic emission signals are not effective means of

identifying sources because signal amplitudes are

greatly affected by attenuation. In figure 4, for exam-

ple, the amplitude of the signals changes significantly

for sensors at different distances from the crack, where

propagation distances are only a few centimeters at

most. Attenuation is even more significant when geo-

metric spreading is dominant, when the wave modes

are highly dispersive (as is the case with flexural

waves), and in highly attenuating materials such as

composites. Nevertheless, the decision was made to

add the amplitude features to the training set to deter-

mine if they would help further identify signals from

each of the classes. The training process was then

repeated for four and five training data sets. For four

classes of data, the reduction in training error, from 9

to 7 percent, was insignificant; with five classes of

data, these amplitudes had no effect on the training

error.

According to Fukunaga (ref. 7), the training error

and classification errors could indicate one or more of

several problems:

1. The training set is not representative of the

analysis data

2. The training set is too small, not indicative of

the range of differences among the analysis

signals

3. The features calculated by the software are not

appropriate for analyzing these data

5



Inspection of the data indicates a fourth possible

source of error: there are too many data points per sig-
nal; that is, there is too much extraneous information

in the data. Each of these problems is discussed. Other

effects, including mode conversion filtration and dis-

tortion of the original stress wave resulting from crack

growth, the frequency response of the measurement

system being too low to capture this wave, and edge

reflection interferences, are also possible factors in the
inability to use these methods.

The signals in the analysis data were chosen

because they have the same visual characteristics as

those in the training set. However, the statistical char-

acteristics of the feature set are used for training and

analysis. Poor agreement between training and analy-

sis results indicates that the signals are statistically
different.

Training the pattern recognition system requires a

data set of sufficient size to analyze statistical differ-

ences in the data. The software recommends training

sets of 10 or more signals. The training sets used were
larger than this and should be of sufficient size. How-

ever, the signals used resulted from one acoustic emis-

sion event being detected at each of four sensors, and

the signals change as they propagate along the plate.
This results in signals that can have different visual,

temporal, and statistical characteristics at each of the

four sensors being included in the same class. There-

fore, the training signals are possibly not truly repre-

sentative of the variances in signals within each signal

classification. This effect can be eliminated by using

data only from the sensor at which the signal from

each event was received first and only the first few
microseconds of the recorded waveform.

The feature set was provided by the chosen soft-

ware. It has been used successfully to characterize

ultrasonic signals, which have some characteristics in

common with acoustic emission signals. However,

there are significant differences that may render these

features inappropriate for this application. Further sta-

tistical analysis of the data may reveal other features
that better identify the statistical differences in the

signals.

Each crack event during the test causes signals to
be recorded on each of four channels. All four chan-

nels begin recording when one channel is triggered,

and some pretrigger data are also stored with the sig-
nal. Because the sensors are at different distances from

the crack, the data on each channel include a varying

amount of signal acquired before the crack signal

reaches the sensor. The latter portions also show the

effects of attenuation and dispersion before reception

at the sensor. Gorman and Prosser (ref. 8) have shown

that, for in-plane sources such as crack extension, the
modal information indicative of extensional waves is

in the first several microseconds of the signal. The lat-

ter part of the signal is dominated by reflections. The

velocity of the extensional wave mode in 2024-T4 alu-
minum is 5380 m/sec. If the crack is 7.5 cm from the

edge of the specimen, reflections of the original signal

will return to the crack position within about 28 btsec.

They would reach a transducer between the crack and

the edge of the specimen even earlier. Thus, most of

the information in the signals after the first 10 _tsec or

so is heavily affected by reflections and artifacts of

geometry. Eliminating the pretrigger portion of the

signal, and all but the first 10 _tsec of the remaining
signal, should focus on the extensional wave and elim-

inate much of the variation caused by reflections. Any

attempt to using pattern recognition to classify acous-
tic emission signals as to their source must take into

account that the signals are heavily affected by mate-

rial properties and geometry. The other effects men-

tioned require additional experimentation to determine

their relevance to the classification of these signals.

Concluding Remarks

In a laboratory fatigue test, TestPro software was

unable to learn to classify acoustic emission signals

from cracks with less than 9 percent classification

error. This classification error may be acceptable in

applications where multiple cracks, or very long

cracks, can be tolerated. In applications where detec-
tion of small cracks, or small numbers of cracks, is

critical, this classification error level is likely to be
unacceptable. Further, where additional acoustic emis-

sion signals are generated from other sources, the clas-

sifiers developed may not be adequate to identify the

signals from cracks. Further preprocessing of the

acoustic emission signals may allow the software to

classify the signals with greater accuracy. A different

set of features that more accurately represents the dif-

ferences observed in the signals may also give better

accuracy.



Appendix A

Statistical Pattern Recognition

Pattern recognition approaches can be classified as

either syntactic or statistical. With syntactic methods,

the observations or signals to be analyzed are broken

down into smaller parts, the way a language or sen-

tence is parsed. The relationships between the parts

are analyzed in a way similar to the ways that syntax

roles express the relationships between parts of

speech• These methods are used when a pattern is so

complex that it is best analyzed as a composition of

simpler subpatterns, as in fingerprint or scene analysis

(ref. 9). Statistical methods, however, rely on mathe-

matical models of the observations to be analyzed and

the relationships among them. A set of measurements,

or features, is extracted from each observation. These

features should be invariant, or less sensitive to com-

monly encountered variations and distortions, and less

redundant, than the observations themselves. These

methods have been applied to waveform classification

as summarized by Fukunaga (ref. 7) upon which the

following discussion is based.

Statistical pattern recognition consists of, first,

representing each observation as a vector in

n-dimensional space, where each dimension n is a fea-

ture used to characterize each observation. Several

such observations, represented by their vectors, form a

distribution in feature space. Each distribution can be

approximated by some probability density function,

which expresses the likelihood that a vector which lies

within the contour of the function belongs to that dis-

tribution. The boundaries which separate these distri-

butions must be determined and expressed as

mathematical functions, which are known as discrimi-

nant functions. Once these discriminant functions are

determined, a pattern recognition network, or classi-

fier, analyzes a given vector and determines to which

distribution it belongs. The process of finding the

proper discriminant function is called learning or

training; the samples used to design the classifier com-

prise the training set.

For simplicity in discussing classifier design, con-

sider the case of two distributions or classes. Ideally

these two classes are totally distinct and separate in

feature space with no overlap. In this case, the training

error is zero, and designing a classifier requires only

consideration of the region in feature space between

the classes. One can develop a linear classifier by

drawing a line bisecting and perpendicular to a line

connecting the means of the two classes. This process

gives a simple method for classifying observations
that fall on either side of the line. Observations that

fall directly on the line can be classified randomly or

rejected.

In the more general case, the classes are not totally

distinct and separate in feature space, but do overlap;

this results in training error. The classifier must be

designed to minimize the error associated with obser-

vations in the overlap region. Let X be a random

n-dimensional vector, as discussed in Papoulis

(ref. 10), whose components are features representing

a test sample, that is, an observation to be classified. In

figure A1, (D1 and {o2 are two classes in feature space.

We define a linear discriminant function h(x) as:

co 1

h(x) = vTx+v 0 > 0
<

0.)2

(1)

The vector X is projected onto a vector V, whose

transpose is V T, and the variable y = vTx in the pro-

jected one-dimensional h-space is classified to either

co1 or co2 depending on whether h(x) < 0 or h(x) > O.

Figure A1 shows two possible choices of V and the

co 1

'"/",02 ,02
"V COl

Figure A1. Example of linear mapping, showing two

classes, co I and o 2, mapped onto vectors V and V' with

errors v 0 and v_). (From ref. 7 (used with permission).)



corresponding choices of v The optimum classifier0"

selects the values of V and v0 which give the smallest
error in the projected h-space. The Fisher criterion f

for determining the optimum V and v0 is

(1"11-1"12)2
f - 2 2 (2)

°l +°2

2 2
where r h, 112, O1, and C 2 are the means and vari-
ances, respectively, of the classes (o1 and 0)2, and f
measures the differences of the two means normalized

by2 the average variance. The means rli and variances
a 1 can be expressed in terms of V and v0 as

"qi = vTMi + v0 (3)

O_ = vTziv (4)

where

covariance matrix of o i

M i expected vector or mean of X i

Substituting equations (3) and (4) into equation (2),

differentiating with respect to V and v0, and setting the

derivative equal to zero yield V with the minimum
error as follows:

1 1. ]-1Vmi n = _E l+,_x 2 (M 2-M1) (5)

Substituting equation (5) into equation (1) yields the

Fisher linear discriminant function hE(X),

sonable in many applications involving signal detec-

tion where the noise is random and does not change

from one signal to another.

The random vector X, with n variables

Ix1 X2 ... x , is the input to the pattern recogni-

tion network. It is a property of a random vector that it

can be characterized by a probability distribution
function P(X);

P(x 1.... ,Xn) = Pr(x 1 <x 1.... xn<Xn) (7)

which may also be written

p(x) = PrfX_<X} (8)

where Pr{A } is the probability of an event A, and X is

a given vector. It is also a property of a random vector

that it can be characterized by a density function p(X),
the derivative of the distribution function,

pX=
pr{xl<x l<x l+Ax 1..... x n<x n<x n+Axn}

lim

Ax I --_0 Ax I .--Ax n

Ax n --) 0

bnpx

_Xl..._x 1
(9)

denoting differentiation of the distribution function

with respect to each of the components of the vector
X. The density function p(X) is not a probability, but

must be mukiplied by a region AX to obtain a

probability. An explicit expression of p(X) for a nor-
real distribution is

hF(X) = {[_ZI+_,2]-I(M2-MI )}

>
x(X+v 0) < 0

(02

(6)

Nx(M,Z) = 1 exp[-_ d2(X)] (10)
(2n),,/21_:11/2

where Nx(M,Z ) is a normal distribution with expected
vector M and covariance matrix Z, and

Linear discriminant functions are optimum only for
normal distributions with equal covariance matrices.

The assumption of equal covafiance matrices is rea-

n n

d2(X) = E E ho(Xl-mi)(xj-mj) (11)

i=1 j=l



where hij is the ij component of _-1, the inverse cova-

fiance matrix, and m i is the expected value or mean of
x i. The coefficient (21t)-rg21E1-1/2 is selected to satisfy

the probability condition

j'p(X) dX = 1 (12)

Equation (10) expresses the probability that a given

vector X is a member of the class defined by the nor-

mal distribution N. The Gaussian probability density

function classifier assigns the test sample to the class
for which this function is maximum.

In the k-nearest neighbor approach, the k nearest

neighbors (kNN's) of a test sample are selected from

the mixture of classes in feature space, and the number

of neighbors from each class among the k selected

samples is counted. The test sample is then classified

to the class represented by a majority of the kNN's.

Ties can be broken at random or rejected and not
classified (ref. 1 1).
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Appendix B

TestPro Software

TestPro software by Infometrics, Inc., is a

computer-based instrument for ultrasonic and eddy-

current inspection. The software incorporates data

acquisition and analysis routines into a package spe-

cifically tailored for these applications. The feature
extraction and pattern recognition modules use stan-

dard statistical algorithms; however, the selection of

features to extract from the signals is specifically cho-

sen to be applicable to ultrasonic and eddy-current sig-
nals commonly encountered in nondestructive

evaluation. Acoustic emission signals bear some simi-

laxity to ultrasonic signals, particularly when ultra-

sonic sensors are used for their detection. They are

very different, however, in that they are generated by
physical and mechanical phenomena in a material or

structure, whereas ultrasonic signals are applied to a
structure which then interacts with and modifies the

signals. Although the TestPro software was developed

specifically for ultrasonic and eddy-current analysis, it

was used here to determine its applicability to the

study of acoustic emission signals.

Feature Extraction

TestPro software preprocesses each waveform,

then calculates 71 features, 35 from the time domain

signal and 36 from the frequency domain, as listed in

table B1. Preprocessing consists of subtracting the

mean value of the waveform data from each point.

This process minimizes the direct-current (dc) compo-

nent in the frequency domain resulting from the fast

Fourier transform (FFT), but this does not necessarily
result in the endpoints of the signal being zero. Since

nonzero endpoints can cause spurious high frequency

components to appear in the power spectrum, it is
desirable to force the endpoints to zero. This forcing is

accomplished by multiplying the first and last eight
points of the signal by a cosine function. The number

of data points is increased to the next power of 2 and

padded with zeros to perform the FFT.

The time domain features are extracted from the

waveform, the cumulative distribution of the wave-

form, and the envelope of the waveform. The wave-
form features are maximum absolute value of the

amplitude, or peak amplitude, and maximum peak-to-

peak amplitude. The waveform is then normalized by

dividing all amplitude values by the peak amplitude,
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resulting in an amplitude range from -0.1 to 0.1.
Because the mean value of the waveform was sub-

tracted, the resulting mean is 0; the standard deviation

of the normalized amplitude values is calculated and
stored as a waveform feature.

The cumulative distribution of the normalized

signal is calculated by computing a running sum of
squares of the signal amplitude versus time. The final

value of the running sum is equal to the total power of

the signal. The cumulative distribution is analyzed to
determine the points in time where the distribution

crosses 25, 50, 75, and 90 percent of the total power.

The differences between the 50- and 25-percent levels,
the 75- and 25-percent levels, and the 90- and

25-percent levels are added to the feature set.

The envelope of the signal is determined by apply-
ing a smoothing function to the positive amplitude

peaks of the signal. It approximates a numeric integra-

tion of the waveform. The resulting envelope is nor-

malized by dividing by the peak amplitude, and the

mean and standard deviation are computed and

included in the feature set. The remaining time domain
features are measured from rise and fall time charac-

teristics of the envelope. Rise and fall times are deter-

mined at points where the envelope crosses thresholds

of 25, 50, and 75 percent of the peak amplitude. Local
rise and fall times are those times at which the thresh-

old crossing is nearest the maximum value of the

envelope; global rise and fall times are those at which

the threshold crossing is farthest from the peak. Rise

and fall slopes indicate how fast the envelope function
rises or falls; rise and fall variances indicate the varia-

tion of amplitude values between the thresholds and

the peak. To calculate the slopes and variances,

TestPro software performs a linear least-squares
regression on the data points between each threshold

crossing and the peak amplitude. Global and local

pulse durations are calculated by subtracting the corre-

sponding rise and fall times.

The frequency domain features are measured from
the power spectrum of the normalized waveform and

the cumulative distribution of the power spectrum.

The FFT is calculated and the squares of the real and

imaginary components are summed to generate a

power spectrum, which is then normalized by the
power level. The mean and standard deviation of the

normalized power spectrum are calculated and
included in the feature set.



Thefrequencyat whichthe maximumvaluesof
the power spectrumoccursis located. The local

50-percent rise and fall frequencies are the half-power

points closest to the frequency of the peak power. The

center frequency is defined as the average of the local

50-percent rise and fall frequencies. The bandwidth is

the difference of these two frequencies divided by the

frequency of the peak and expressed as a percentage.

Local and global spectral features are determined in a

manner similar to the local and global time domain

features described earlier. Fractions of total power

estimates are measured by computing the power con-

tributions over the relevant frequency intervals as

specified in table B 1 (features 44-47), then dividing

by the power contribution between the local rise and

fall frequencies at 25 percent of the peak power. The

remaining frequency domain features are analogous to

those measured from the envelope function in the time
domain.

Feature Selection

TestPro software uses a k-nearest neighbor algo-

rithm to analyze the waveform features and to learn to

distinguish signals from different classes. This learn-

ing requires a set of known signals for each of the

classes. The value of k used for learning is the square

root of the number of signals in the smallest set of the

training data.

TestPro software first attempts to classify the sig-

nals using each feature individually. For each wave-

form in the database, its k nearest neighbors are

identified by using minimum distance in a single
dimension. Using the class value of the majority of the

k nearest neighbors, a class call for the waveform is
determined. If this class call is not the same as the

given class of the waveform, an error counter is incre-

mented. This process is repeated for all waveforms in

the training set for the single feature being analyzed;
this results in an estimate of the classification error

using the single feature. This process is repeated to

obtain a single error estimate for each feature. The fea-

ture with the minimum single error is selected as the

optimum feature. The entire process is repeated to

determine the second optimum feature. The nearest

neighbor criterion now involves computation of a two-
dimensional distance to determine the k nearest neigh-

bors, where the first dimension is the first optimum

feature and the second is the feature being analyzed.

The error analysis is again performed for each feature,

and the feature with the minimum error is added to the

set of optimum features. This process is repeated, with

the distance determination expanding to multiple

dimensions until either the number of optimum fea-

tures equals 10, adding another feature to the optimum
set results in no further reduction of the overall error is

achieved.

TestPro software then allows several classifiers or

discriminants to be developed to be used for analyzing

unknown signals. These are the Gaussian probability

density function, a Fisher linear discriminant, and

k-nearest neighbor nonlinear discriminant function,

where k ranges from 1 to 20.

Waveform Analysis

Waveform analysis is the process of classifying

unknown signals. Each classifier, or discriminant

function, is used to determine the probability of each

unknown waveform belonging to each of the classes

defined in the learning process. The total probability

sums to 100 percent over all the classes for each
waveform.

Each classifier uses some measure of the distance

between the feature values of the waveform being ana-

lyzed and the mean values of the features used in train-

ing to determine the class probabilities. A confidence

level is also given as an indication of how closely the

evaluation point fits the mean values of the training

data. Each feature is scaled by subtracting the mean
value of the training set and dividing by its standard

deviation. This value represents the distance between
the feature being evaluated and the mean of the train-

ing set in standard deviations. This distance is deter-
mined for each of the defined classes and converted to

a qualitative confidence level. If the difference is less

than or equal to two standard deviations (2t_), the con-

fidence level is high. A difference greater than 26 and

less than or equal to 3t_ is a medium confidence level.

A difference greater than 3t_ is a low confidence level.
The confidence level of the minimum difference is

assigned to the feature being evaluated.

This process is repeated for each additional feature
in the optimum feature set. An overall confidence

level is determined by selecting the maximum of the

sealed differences for each feature and converting it to
a confidence level.
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Table B 1. Waveform Features Calculated by TestPro Software

Feature Description

Radio frequency (RF) waveform

1 Maximum absolute amplitude of RF waveform

2 Maximum peak-to-peak amplitude of RF waveform

3 Mean value of normalized RF waveform amplitude values
4 Variance of normalized RF waveform amplitude values

RF waveform cumulative distribution (CD)

5 Difference between 50- and 25-percent level (RF waveform CD)

6 Difference between 75- and 25-percent level (RF waveform CD)

7 Difference between 90- and 25-percent level (RF waveform CD)

RF waveform envelope function

8

9

10

11

12

13

14

15

16

17

18
19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Local pulse duration between 25-percent levels

Global pulse duration between 25-percent levels

Mean value of normalized envelope function

Variance of normalized envelope function

Local rise time from 25-percent level to peak

Local rise time from 50-percent level to peak

Local fall time from peak to 25-percent level

Local fall time from peak to 50-percent level

Local rise slope between 25-percent level and peak

Local rise variance between 25-percent level and peak

Local rise slope between 50-percent level and peak

Local rise variance between 50-percent level and peak

Local fall slope between peak and 25-percent level

Local fall variance between peak and 25-percent level

Local fall slope between peak and 50-percent level

Local fall variance between peak and 50-percent level

Global rise time from 25-percent level to peak

Global rise time from 50-percent level to peak
Global fall time from peak to 25-percent level

Global fall time from peak to 50-percent level

Global rise slope between 25-percent level and peak

Global rise variance between 25-percent level and peak

Global rise slope between 50-percent level and peak

Global rise variance between 50-percent level and peak

Global fall slope between peak and 25-percent level

Global fall variance between peak and 25-percent level

Global fall slope between peak and 50-percent level

Global fall variance between peak and 50-percent level

Spectrum cumulative distribution

36

37

38

Difference between 25- and 50-percent level (spectrum CD)

Difference between 25- and 75-percent level (spectrum CD)

Difference between 25- and 90-percent level (spectrum CD)
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TableB1.Concluded

Feature Description
Powerspectrum

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Frequencyofmaximumvalueofpowerspectrum
Centerfrequencyofpowerspectrum
Measuredbandwidth
Meanvalueofnormalizedpowerspectrum
Varianceofnormalizedpowerspectrum
Fractionoftotalpowerbetweenlower25-percentlevelandpeak
Fractionoftotalpowerbetweenlower50-percentlevelandpeak
Fractionoftotalpowerbetweenpeakandupper25-percentlevel
Fractionoftotalpowerbetweenpeakandupper50-percentlevel
Localrisefrequencyfrom25-percentleveltopeak
Local
Local
Local
Local
Local
Local
Local
Local
Local
Local
Local
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

risefrequencyfrom50-percentleveltopeak
fallfrequencyfrompeakto25-percentlevel
fallfrequencyfrompeakto50-percentlevel
riseslopebetween25-percentlevelandpeakofspectrum
risevariancebetween25-percentlevelandpeakofspectrum
riseslopebetween50-percentlevelandpeakofspectrum
risevariancebetween50-percentlevelandpeakof spectrum
fallslopebetweenpeakofspectrumand25-percentlevel
fallvariancebetweenpeakofspectrumand25-percentlevel
fallslopebetweenpeakofspectrumand50-percentlevel
fallvariancebetweenpeakof spectrumand50-percentlevel
risefrequencybetween25-percentlevelandpeakofspectrum
risefrequencybetween50-percentlevelandpeakofspectrum
fallfrequencybetweenpeakofspectrumand25-percentlevel
fallfrequencybetweenpeakofspectrumand50-percentlevel
riseslopebetween25-percentlevelandpeakofspectrum
risevariancebetween25-percentlevelandpeakof spectrum
riseslopebetween50-percentlevelandpeakofspectrum
risevariancebetween50-percentlevelandpeakof spectrum
fallslopebetweenpeakofspectrumand25-percentlevel
fallvariancebetweenpeakofspectrumand25-percentlevel
fallslopebetweenpeakof spectrumand50-percentlevel
fallvariancebetweenpeakof spectrumand50-percentlevel
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